Isometric exercise

Hislop and Perrine (1967) described isometric exercise as muscular contractions against a load which is fixed or immovable or is simply too much to overcome. Two German physiologists (Muller and Hettinger, 1954) performed a study which claimed that one six second isometric contraction at two-thirds maximum performed once each day for five days was sufficient for 5% strength gains per week. This received a disproportionate amount of publicity from which it would appear that the medical community has never recovered.

During isometric exercises muscles contract, however there is no motion in the affected joints. The muscle fibers maintain a constant length throughout the entire contraction. The exercises are usually performed against an immovable surface or object such as pressing the hand against the wall. The muscles of the arm are contracting but the wall is not reacting or moving as a result of the physical effort.

Isometric training is effective for developing total strength of a particular muscle or group of muscles. It is often used for rehabilitation since the exact area of muscle weakness can be isolated and strengthening can be administered at the proper joint angle. This kind of training can provide a relatively quick and convenient method for overloading and strengthening muscles without any special equipment and with little chance of injury.

Although it has been shown that strength gains are possible from isometric contraction these strength gains are very minimal and almost all studies since have shown that the gains in pure muscular strength are only at the specific angle at which the exercise is performed. Hence, to make isometric exercise effective at increasing functional strength it must be repeated at many different joint angles. Isometric improvements have also been shown to be rate specific (Morrissey, Harman and Johnson 1995), this means that isometric strength gains can be best utilized only at particular speeds. These improvements are seen mostly in slower movements which are not functional and of little use to people wishing to return to any kind of physical activity.

Isometric exercise does not, contrary to popular opinion, increase muscular endurance or functional capacity in real world situations. The extreme effort involved with isometric exercises causes considerable internal pressure both within the muscles themselves and in the abdominal and thoracic cavities. Isometric exercise can increase blood pressure and heart rate to levels that would be dangerous for anyone with undiagnosed cardiac problems (Nagle, Seals and Hanson 1988, White and Carrington 1993 and Baum et al. 1995), whilst also increasing intra abdominal pressure to dangerously high levels (Williams and Lind 1987).

For those in good health this is not problematic however, for those who have suffered muscular or tendonus injuries the consequences can be dire. Isometric exercises are, however, extremely good for strengthening muscle groups around an injured joint as the joint surfaces actually distract from one another during isometric contraction. However, following isometric exercise there is a decrease of muscle power by up to 60-70% (Tidas and Shoemaker 1995), this can last for up to 96hrs (4 days). During this time the associated joints are exposed to much higher than normal impact and sheer forces as they have lost one of their most vital protective mechanisms. This could lead to discomfort as demonstrated by Melchionda et al. (1984) which is not experienced with isokinetic concentric contractions (Dvir 1995). In reality electrical stimulation of a muscle is more effective at increasing muscular strength than isometric exercise as has been shown by Draper and Ballard (1991).